En statistique, le surapprentissage, ou surajustement ou encore surinterprétation, est une analyse statistique qui correspond trop précisément à une collection particulière d'un ensemble de données. Ainsi, cette analyse peut ne pas correspondre à des données supplémentaires ou ne pas prévoir de manière fiable les observations futures. Un modèle surajusté est un modèle statistique qui contient plus de paramètres que ne peuvent le justifier les données[1].